®

Fibrewound Pressure Tanks

Maximum Operating Pressure $=125 \mathrm{PSI}$
Maximum Internal Water Temperature: $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$. Maximum Ambient Air Temperature: $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$
Distance from base to center line of connection is $2-1 / 4^{\prime \prime}(5.7 \mathrm{~cm})^{*}$.

* $1-3 / 4$ " $(4.4 \mathrm{~cm})$ for 16 " diameter tanks

Allow 12 " $(30.5 \mathrm{~cm})$ for service clearance.
Certified to ANSI/NSF 61, Drinking Water System Components
PRO-Source ${ }^{\text {TM }}$ is a trademark of Pentair Water.
In order to provide the best products possible, specifications are subject to change.

Fibrewound Pressure Tanks

APPLICATIONS

- Use wherever pressurized tanks are needed in water systems applications.

SPECIFICATIONS

Inner Liner - One-piece highdensity polyethylene
Outer Shell - Fiberglass-wound, oven-cured, and epoxy resin sealed
Exclusive Air Cell - Heavy gauge butyl, meets Water Quality Association standards
Base - Rotatable base
Service Connection - Stainless steel, 300 grade

FEATURES

Durable Composite

Construction - A rugged one-piece molded, inner-liner of premium highdensity polyethylene.

- Miles of continuous overlapping fiberglass strands, sealed with oven cured epoxy make the outer-shell impervious to rust, dents, and ultra-violet rays. No paint to scratch and touch-up.
Air Cell - The air cell is molded from durable and extensively tested butyl.
- Butyl is resistant to chlorine.
- Butyl will not support iron bacteria growth that may be present in the water supply.
- PRO-Source Composite Fibrewound Pressure Tank assembly is classified to ANSI/NSF Standard 61 for water system components.

Tank Base - Rigid molded ABS is the sturdiest composite base on the market. Corrosion- and impactresistant. Base rotates 360° for ease-of-service hook-up.
Replaceable Air Cell - With the tank installed. Air cell access is via a top mount design. Generous and accessible air cell opening facilitates easy removable and re-installation of replacement air cell (with the professional contractor in mind).
Stainless Steel Service
Connection - 300 grade, the
professional's choice

In order to provide the best products possible, specifications are subject to change.

Size tank for one gallon of drawdown for each gallon per minute at pump capacity.

EXAMPLE: For a 1 HP, 20 GPM unit pumping 20 gallons per minute on a 30-50 pressure switch setting, the properly sized PRO-Source ${ }^{\text {TM }}$ tank is a PSC-85-25, which has a 26.8 gallon drawdown.

Fibrewound Pressure Tanks

OPERATING CYCLE

1. PRO-Source ${ }^{\text {TM }}$ composite tank is nearly empty - air cell is fully expanded

2. Water is pumped into tank air in cell is compressed

3. Pump-up cycle is complete air is now compressed to "cut off" setting of pressure switch

4. Water is drawn from tank pressure in air cell provides water as needed, until tank is empty and cycle repeats

TANK SELECTION CHART

Pump GPM	System Pressure Switch Setting - PSI					
	20-40		30-50		40-60	
	Run Times					
	1 Minute	2 Minute	1 Minute	2 Minute	1 Minute	2 Minute
5	PSC-20-6	PSC-35-10	PSC-20-6	PSC-35-10	PSC-20-6	PSC-35-10
7.5	PSC-30-9	PSC-48-14	PSC-30-9	PSC-48-14	PSC-30-9	PSC-60-20
10	PSC-35-10	PSC-60-20	PSC-35-10	PSC-60-20	PSC-40-12	PSC-85-25
12.5	PSC-40-12	PSC-60-20	PSC-48-14	PSC-85-25	PSC-48-14	PSC-85-25
15	PSC-48-14	PSC-85-25	PSC-60-20	PSC-119-35	PSC-60-20	PSC-119-35
20	PSC-60-20	PSC-119-35	PSC-85-25	PSC-85-25	PSC85-35	PSC-85-25 (2)
30	PSC-85-25	PSC-85-25 (2)	PSC-119-35	PSC-119-35 (2)	PSC-119-35 (2)	PSC-119-35 (2)
50	PSC-85-25 (2)	PSC-119-35 (3)	PSC-85-25 (2)	PSC-119-35 (3)	PSC-119-35 (2)	PSC-119-35 (3)

NOTE: Drawdown will be affected by operating temperature of the system, accuracy of the pressure switch and gauge, the actual precharge pressure, and rate of fill.

DRAWDOWN VOLUME MULTIPLIER* (APPROXIMATE)								
Pump Off	Pump Start Pressure - PSI							
PSI	10	20	30	40	50	60	70	80
20	0.26							
30	0.41	0.22						
40		0.37	0.18					
50		0.46	0.31	0.15				
60			0.40	0.27	0.13			
70			0.47	0.35	0.24	0.12		
80				0.42	0.32	0.21	0.11	
90				0.48	0.38	0.29	0.19	0.10
100					0.44	0.35	0.26	0.17

*Utilize this chart if proper selection cannot be made using tank selection chart. Drawdown based on Boyle's Law.

Procedure:

1. Identify drawdown multiplier relating to specific application.
2. Insert multiplier (X) into the following formula:

Pump GPM x Min Run Time $=$ Minimum Tank Multiplier (X) Capacity Required
3. Refer to "Ordering Information" Table - Max. Capacity Gals.

